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Local pressures are important in the calculation of interface tensions and in analyzing micromechanical
behavior. The calculation of local pressures in computer simulations has been limited to systems with pairwise
interactions between the particles, which is not sufficient for chemically detailed systems with many-body
potentials such as angles and torsions. We introduce a method to calculate local pressures in systems with
n-body interactions �n=2,3 ,4 , . . . � based on a micromechanical definition of the pressure tensor. The local
pressure consists of a kinetic contribution from the linear momentum of the particles and an internal contri-
bution from dissected many-body interactions by infinitesimal areas. To define dissection by a small area,
respective n-body interactions are divided into two geometric centers, effectively reducing them to two-body
interactions. Consistency with hydrodynamics-derived formulas for systems with two-body interactions �J. H.
Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 �1950��, for average cross-sectional pressures �B. D. Todd,
D. J. Evans, and P. J. Daivis, Phys. Rev. E 52, 1627 �1995��, and for volume averaged pressures �virial
formula� is shown. As a simple numerical example, we discuss liquid propane in a cubic box. Local, cross-
sectional, and volume-averaged pressures as well as relative contributions from two-body and three-body
forces are analyzed with the proposed method, showing full numerical equivalence with the existing ap-
proaches. The method allows computing local pressures in the presence of many-body interactions in atomistic
simulations of complex materials and biological systems.
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I. INTRODUCTION

Local pressures are important for the calculation of inter-
face tensions and the analysis of mechanical responses to
strain, heat, photoexcitation, and phase transformations �1,2�.
The study of such processes is broadly relevant in condensed
matter physics, chemistry, and materials science. For ex-
ample, the analysis of local pressures in fluids �3,4�, poly-
mers �5–7�, at surfaces �8,9�, as well as during conforma-
tional changes in proteins �10,11� contributed to the
understanding of interfaces and secondary molecular struc-
ture.

Calculations of local pressures in computer simulations
became feasible through the seminal work of Irving and
Kirkwood on the Navier-Stokes equation of hydrodynamics
�12�. Irving and Kirkwood described the calculation of local
pressure tensors in the presence of pairwise interactions be-
tween the particles. However, the limitation to two-body in-
teractions poses a problem for the calculation of local pres-
sures in computer simulations of biochemical or materials
systems �13�. Many-body potentials such as angle bending
and torsion potentials are often essential to understand the
local structure and dynamics �13�, which necessitates a
method to calculate local pressures in the presence of many-
body interactions.

Related to the calculation of pressure tensors, the question
of the uniqueness has been raised �4,7,14�. This discussion
mainly elaborates on the possibility to add any quantity of

zero divergence to the hydrodynamic pressure tensor �12�.
We will not pursue this question of nonuniqueness further,
which seems not to affect the physical interpretation of the
pressure tensor as a force across a unit area �12�. Our treat-
ment of local pressure tensors is entirely based on the micro-
mechanical definition of the pressure tensor as a force across
a unit area and independent from hydrodynamic theory. The
results are then compared to those from hydrodynamic
theory and show consistency.

The outline of the paper is as follows. In Sec. II, we state
our definition of the local pressure tensor and the conditions
for the system. We also summarize existing methods and
their limitations to calculate local and average pressures. In
Sec. III, we introduce the method to calculate local pressures
in the presence of n-body interactions �n=2,3 ,4 , . . . �. We
then use this method to compare with the method of Irving-
Kirkwood, the method of planes �15�, and the virial theorem.
In Sec. IV, we discuss propane molecules in a cubic box as a
numerical example to illustrate the application of our method
in the calculation of local and average pressures, including a
full comparison to results from hydrodynamics-derived
methods. In Sec. V, we conclude the paper with a summary.

II. DEFINITION OF THE PRESSURE TENSOR AND
EXISTING METHODS OF CALCULATION

A. Micromechanical definition of the pressure tensor

We consider a system of N particles �atoms, molecules� in
mechanical equilibrium with no resulting force on and no
resulting velocity of its center of mass. An extension to non-
equilibrium systems is feasible by subtracting local stream-
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ing velocities from the equilibrium velocities considered
here. The distribution of the N particles and type of interac-
tions between them can be freely chosen, i.e., we assume
n-body interactions �n=2,3 ,4 , . . . � as the general case.

The local pressure is defined using a �infinitesimally�
small cube bounded by surfaces A� perpendicular to the Car-
tesian axes �=x ,y ,z �Fig. 1� �16�. The resulting forces F� in
the direction of the Cartesian axes �=x ,y ,z acting on each
boundary area A� yield the elements p�� of the local pressure
tensor as

p�� =
F�

A�

. �1�

.
In a computer simulation, this definition of the pressure

for a certain point in space �Fig. 1� is somewhat approximate
because averaging over a finite volume �limit �V→0� and
over a certain simulation time or number of configurations
�limit �t→��, respectively, is usually required. The instan-
taneous pressure tensor is defined by the total forces Fx, Fy,
Fz acting on the areas Ax, Ay, Az, and there are commonly
two additive contributions �17�,

p�� = p��
kin + p��

int . �2�

These are a kinetic contribution p��
kin from throughput of lin-

ear momentum resulting from the particle velocities and an
internal contribution p��

int from intermolecular and intramo-
lecular forces acting across A�.

The appropriate size of the cube depends on the purpose
of the calculation. The shorter the range of interactions and
the more configurations are considered for averaging, the
smaller may be the size of the cube. When the side length of
the face A� is equal or longer than the range of interactions
between the particles, interactions are properly accounted for
and time averaging for a short period is sufficient. If the side
length of the face A� is shorter than the range of interactions
between the particles, the nature of these interactions may
not be accounted for correctly and time averaging over a
long period is recommended to avoid strong fluctuations.

B. Thermodynamic definition of the pressure

An alternative approach to calculate the pressure is based
on the thermodynamic relation for fluids

p = − � �A

�V
�

T
, �3�

where A is the free energy of the system, V the volume, and
T the temperature. At constant temperature, the infinitesimal
change in free energy dA is equal to the infinitesimal work
�W �according to the definition of A and the first law of
thermodynamics�. In solids, �W may be the result of tensile
or shear stress, and the quantity dV can be written as

dV�� = A�d� , �4�

which represents an infinitesimal movement of the face A�

along the coordinate �.
According to the definition of strain and shear �16�, Eq.

�3� becomes equivalent to Eq. �1�,

p�� = − � �W

dV��
�

T
= −

1

A�
��W

d�
�

T
=

F�

A�

. �5�

The minus sign indicates that the system performs work
against an outside pressure, which is opposite equal to the
inner equilibrium pressure �against the wall�. Thus, at a mi-
croscopic level, the thermodynamic definition of the pressure
tensor is equivalent to the mechanical definition in Eq. �1�.
Ultimately, the mechanical definition seems better suited in a
simulation because difficulties to measure local free energies
�or entropies� can be avoided.

C. Existing methods to calculate pressure tensors

The most important approaches are the method of Irving
and Kirkwood �12�, the method of planes �15�, and the virial
theorem �17�.

1. Local pressure tensor in the presence of two-body interactions

Irving and Kirkwood developed a method to calculate lo-
cal pressure tensors for systems with two-body interactions,
based on the equations of hydrodynamics �12�. For the exact
formalism, the reader is referred to the original reference
�12,18�. When we consider discrete particles in a computer
simulation, the mathematically exact point function pressure
tensors �12� need to be extended to small cubes as introduced
in Sec. II A �Fig. 1�. Assuming that the cubes are bounded by
surfaces A� with side lengths 2��, the local pressure accord-
ing to Irving and Kirkwood consists of the aforementioned
kinetic and internal contributions,

p���x,y,z� =
1

2A���� �
i���V=2A����

mivi�vi�	
+

1

A�
� �

rij�A�

Fij�	 . �6�

The local pressure p���x ,y ,z� at a certain coordinate �x ,y ,z�
in space is given by the masses mi and velocities vi of the
particles i in a small cube of volume �V=2A��� and by the
two-body forces Fij between particles whose connecting vec-
tor rij dissects the small area A� �sign convention, Fij is the
force on the particle with higher � coordinate�. The exact
Irving-Kirkwood result is obtained for ��→0 ��V→0� and

FIG. 1. Model of a small cube to illustrate the definition of local
pressures. The three shaded faces A� share a point of intersection in
the geometric center of the cube. Some particles and molecules are
also shown.
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�t→�, describing a point-function stress tensor as a result
of time averaging only �19�.

Related to the Irving-Kirkwood approach are the alterna-
tive methods by Harasima �20�, which defines dissection in a
different way �4,7�, and the so-called IK1-approach �15�,
where deviations to the Irving-Kirkwood results have been
reported �7�.

2. Average cross-sectional pressure

Todd, Evans, and Daivis introduced a method to calculate
average cross-sectional pressures �15�. The area A� �perpen-
dicular to axis �� is now considered to be a cross section of
the entire box and the pressure for a given coordinate � is

p̄����� =
1

2A���� �
�−����i��+��

mivi�vi�	
+

1

2A�
��

i=1

N

Fi� sgn��i − ��	 . �7�

The elements p�� �px� , py� , pz�� of the average cross-
sectional pressure at a certain coordinate � are given by the
masses mi and velocities vi of the particles i in a small
cuboid of the volume �V=2A��� and by the net forces Fi
on every particle i. Fi specifies the resulting force on particle
i due to interactions with all other particles. The exact result
is formulated for ��→0 �15� while for computational pur-
poses a finitely small �� is required to sample velocities.
There is no demand on the type of interactions between the
particles �except for �i=1

N Fi=0� so that n-body interactions
�n=2,3 ,4 , . . . � between the particles are acceptable.

3. Average pressure over the entire box

The virial theorem is routinely used to compute average
pressures over the entire volume of a closed box �12,16,17�,

p̄�� =
1

V
��

i=1

N

mivi�vi� + �
i=1

N

Fi��i� . �8�

The elements of the average pressure tensor for the entire
box are given by the masses mi and velocities vi of the par-
ticles i in the total volume V and by the net forces Fi on
every particle i. The same formula rewritten for the average

tensor P̄ reads as

P̄ =
1

V
���

i=1

N

mivi · vi
T	 +��

i=1

N

Fi · ri
T	� �9�

and the scalar pressure is

p =
pxx + pyy + pzz

3
=

1

3V
���

i=1

N

mivi · vi	 +��
i=1

N

Fi · ri	� .

�10�

Derivations for these formulas can be found, for example, in
Refs. �17,21�. Alike to the method of planes, there are no
specific demands on the interaction between the particles
�except for �i=1

N Fi=0� and n-body interactions �n
=2,3 ,4 , . . . � are acceptable.

III. THE PRESSURE TENSOR IN THE PRESENCE OF
MANY-BODY INTERACTIONS

In this section, we propose a method to calculate local
pressure tensors in systems with many-body interactions and
subsequently relate this method to the existing methods men-
tioned in the preceding section.

A. The local pressure tensor in the presence of many-body
interactions

Figure 2 illustrates the idea for calculating local pressure
tensors. We imagine a small cube �Fig. 1� somewhere within
our system and want to know what the forces across the
areas A� are. In computer simulations, two-body interactions
�bond stretching, van der Waals interaction, Coulomb inter-
action� and many-body interactions �angle bending, torsions,
out-of-plane interactions� are usually characterized by their
contributions to the potential energy. The associated n-body
potential En�n=2,3 ,4 , . . . � can be used to calculate a point
force on every participating atom of the n-body interaction,

Fi = − �ri
En. �11�

The sum over all n individual forces related to the n-body
interaction is then zero

F1 + F2 + ¯ + Fn = 0 �12�

because these interactions are internal and do not accelerate
the center of mass of the associated particles. In the simplest
case of two-body interactions, the two individual forces are
F1=Fji, i.e., the force exterted on particle i by particle j, and
F2=Fij, i.e., the force exerted on particle j by particle i.
These two forces differ only in their sign and have the same
absolute value, so that F1+F2=0. Analogously, we find F1
+F2+F3=0 for a three-body interaction like an angle and
F1+F2+F3+F4=0 for a four-body interaction like a torsion.

These interactions contribute to the pressure tensor only
when they are dissected by A�, and a criterion for dissection
must be defined. Though it is not uniquely possible, physi-

FIG. 2. Approximation of the local pressure tensor p���x ,y ,z�
as a function of the three coordinates. We imagine a movable grid
along each of the Cartesian axes �. For a point function pressure
tensor, the microscopic cubes �V= �2���3 approach a zero volume.
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cally reasonable definitions converge when the side length of
the �finite� surface A� is at least as large as the range of the
contributing n-body interactions, or when sufficient time av-
eraging is performed. We suggest that two centers of geom-
etry are defined, for the particles of the n-body interaction
above A� and for the particles of the same n-body interaction
below A�. For this purpose, we extend the finite surface A�

to a plane �Fig. 3�. If k particles are located above the plane
��i��� and l particles below the plane ��i	��, then the two
centers of geometry c1 and c2 are given as the average posi-
tion vector for each set of particles,

c1 =
1

k
�
i=1

k

xi, c2 =
1

l
�
i=1

l

xi. �13�

Here xi designates the position vector of the individual par-
ticles pertaining to each of the two sets, corresponding to a
total of k+ l=n particles for the n-body interaction. If the
straight line rn=c1−c2 between the two geometric centers
passes through the surface A�, the n-body interaction is dis-
sected and contributes to the internal part of the pressure. If
the line between the two geometric centers does not pass
through the area A�, no contribution to the internal part of
the pressure is made �Fig. 3�.

Having now established the forces and a criterion of dis-
section, we can calculate the internal contribution to the
pressure. According to Eq. �12�, for each dissected n-body
interaction the sum of point forces of the participating atoms
above A� is opposite equal to the sum of point forces of the
participating atoms below A�. We can express the associated
force per area A� as follows:

p��
int �x,y,z� =

1

2A�
� �

rn�A�

�
i=1

n

Fi� sgn��i − ��	 . �14�

The internal contribution of a n-body interaction to the local
pressure tensor is given by the small area A� and the atom-

based forces Fi related to the n-body potential, if the con-
necting vector rn between the two geometric centers on ei-
ther side of A� passes through A�. The factor 1

2 takes into
account the effect of the sign function which counts the
forces on the area A� twice �the forces above and below A�

are opposite equal�.
To obtain the complete expression for the local pressure

according to Eq. �2�, we add the kinetic contribution, which
is the same as in Eq. �6�, to Eq. �14�,

p���x,y,z� =
1

2A���� �
i���V=2A����

mivi�vi�	
+

1

2A�
� �

rn�A�

�
i=1

n

Fi� sgn��i − ��	 . �15�

The local pressure p���x ,y ,z� at a certain coordinate �x ,y ,z�
in space is given by the masses mi and velocities vi of the
particles i in a small cube of volume �V=2A��� and by the
atom-centered forces Fi due to n-body interactions. Only
those n-body interactions are counted, which extend across
A� and whose connecting vector rn between the two geomet-
ric centers is dissected by A�.

Equation �15� is the main result of this paper. The remain-
ing sections deal with Eq. �15� to calculate local pressures in
systems with two-body interactions, average cross-sectional
pressures, and volume-averaged pressures to compare with
results from hydrodynamics-based approaches.

B. The special case of two-body interactions

When we consider Eq. �15� exclusively for n=2, the geo-
metric centers on either side of the extended area A� become
identical with the two particles �Fig. 3� and we obtain F1�

=−F2� for the two-body forces according to Eq. �12�. Con-
sidering only one of the forces, we eliminate the double sum
and the factor 1

2 in Eq. �15�. When we designate the two
particles as i and j, rename their connecting vector rn=rij,
and the two-body force F1�=Fij�, we obtain

p���x,y,z� =
1

2A���� �
i���V=2A����

mivi�vi�	
+

1

A�
� �

rij�A�

Fij�	 . �16�

This result is the same as the Irving-Kirkwood formula for a
discrete distribution of particles Eq. �6�. Equation �15� is thus
consistent with the result from hydrodynamics for systems
with two-body interactions.

C. The average pressure over a cross section of the box

Averages over a cross section of the box in the direction
��x ,y ,z� are often useful to calculate cross-sectional pres-
sure profiles. A� now represents the entire cross section of
the box �Fig. 4� instead of a small area A�= �2���2 within a
small cube �V= �2���3. The kinetic contribution p̄��

kin��� is
calculated from the volume element �V=2A��� with a
small ��. The internal contribution p̄��

int ��� is determined by

FIG. 3. The definition of geometric centers on both sides of the
area A�, for a three-body interaction and for a four-body interaction.
The connecting vector between the geometric centers of the four-
body interaction is intersected by A�, leading to a contribution to
the internal pressure. The three-body interaction does not contribute
to the internal pressure across A�. If we assume bonds, angles,
torsions, and pairwise van der Waals interactions �excluding 1,2 and
1,3 van der Waals interactions� between the particles, we find con-
tributions from two bonds, one angle, one torsion, and eight non-
bond interactions to the internal pressure across A�.
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the internal forces acting across the area A�, in the same way
as a local pressure tensor. Thus, Eq. �15� is directly the so-
lution.

However, simplification of this expression is possible be-
cause the cross-sectional area divides the �nonperiodic� box
into two separate parts. Therefore, all n-body interactions
with atoms on both sides of A� are inevitably dissected so
that we do not have to worry about the definition of geomet-
ric centers and their connecting vectors. Furthermore, all the
remaining nondissected n-body interactions make zero con-
tributions �Eq. �12�� so that we can extend the double sum
over all n-body interactions, regardless if they are dissected
or not,

p̄����� =
1

2A���� �
i���V=2A����

mivi�vi�	
+

1

2A�
� �

all n-body interactions
�
i=1

n

Fi� sgn��i − ��	 .

�17�

The connection between individual n-body interactions and
the net force on each atom �Fi=−�ri

Epot� is

Fi = Fi,n-body 1 + Fi,n-body 2 + ¯ + Fi,n-body k, �18�

i.e., the net force on each atom is constituted by the sum over
all contributions from the k many-body interactions in which
the atom is involved. Running a summation over all n-body
interactions present in the system with their associated atom-
based forces is therefore equal to running the summation
over all atomic net forces,

p̄����� =
1

2A���� �
i���V=2A����

mivi�vi�	
+

1

2A�
��

i=1

N

Fi� sgn��i − ��	 . �19�

Note that we use in Eq. �19� the symbol Fi� for net forces on
the atom i while in Eqs. �17� and �18� the same symbol

represents the force on atom i due to the respective n-body
interaction only. A simple interpretation of the result Eq. �19�
is also possible in terms of the zero net force on the system
as a whole ��i=1

N Fi=0�. The force across the plane A�, which
divides the box in two halves, must therefore be opposite
equal on both sides and be given by a summation of atom-
based net forces of the particles above the plane ��i���, or
below the plane ��i	��, or by the summation over all forces
scaled with the sign function and the factor 1

2 as in Eq. �19�.
The advantage of Eq. �19� is its simplicity. Besides coordi-
nates and velocities, only the net forces Fi=−�ri

Epot acting
on every particle are sufficient, which is easy to implement
in molecular dynamics and Monte Carlo schemes �as long as
the potential function is differentiable�. Our result for the
average cross-sectional pressure Eq. �19� is exactly the same
as mentioned in Eq. �7� for the method of planes �15�, show-
ing consistency of our method with the result from hydrody-
namics �15,22�.

D. The average pressure over the entire box

Now we want to derive the average pressure over the
entire box, i.e., the pressure that is felt at the box boundaries.
While a derivation in the presence of two-body interactions
was given by Haile �17�, we consider the presence of n-body
interactions as the general case. We assume here again an
isolated box �without periodic boundary condition� and no
external forces. We view the N particles in the order of in-
creasing � coordinate along any of the Cartesian axes. A
cross-sectional area A�1 at �=�1 is inserted just before the
first particle is reached, a second cross-sectional area A�2 at
�=�2 is inserted just before the second particle is reached,
and so forth, until the Nth cross-sectional area A�N is inserted
just before the Nth particle is reached. In total, we insert N
imaginary planes in consecutive order along the � axis. The
pressure due to internal forces at the plane A�j is then given
as

p̄��
int �j� =

1

A�j
�Fj� + Fj+1� + ¯ + FN�� . �20�

Here we write the net force on one side of the plane as
�i=j

N Fi, which is equivalent to p̄��
int ��� in Eq. �19� without the

factor 1 /2. When we sum over all N planes at their distance
intervals ��i, the average internal pressure along the entire
coordinate �0=�i=1

N+1��i is given as

p̄��
int =

1

�0
�
i=1

N+1

p̄��
int �i� · ��i. �21�

We note that a distance ��N+1 between the last particle N
and the end of the box must be included in the summation in
order to average over the full box length �0. However,
p̄��

int �N+1�= p̄��
int �1�=0 because all particles are located on

only one side of the area ��i=1
N Fi=0 and Eq. �20��. Thus we

can leave the �N+1� term out in the summation; the first term
is kept for algebraic reasons. Inserting Eq. �20� yields

FIG. 4. Average cross-sectional pressures as a function of the
coordinate �. The calculation of the internal part of the average
pressure component p̄zz

int�z� is illustrated schematically.
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p̄��
int =

1

A�

1

�0
�
i=1

N

�Fi� + Fi+1� + ¯ + FN����i. �22�

Now we rearrange this expression from a sum over all N
planes into a sum over all N particles �the particles i are still
labeled in the order of ascending z coordinate�. �i=��1
+ ¯ +��i is then equivalent to the � coordinate of the par-
ticles i, and together with the relation V=A��0 for the box
volume we obtain

p̄��
int =

1

V
�
i=1

N

Fi��i. �23�

This is the internal part of the pressure as in Eq. �8�. The
kinetic part of the average pressure over the entire box is
obtained as follows: starting with the kinetic contribution of
the pressure

p̄��
kin��� =

1

A���� �
�−��/2��i��+��/2

mivi�vi�	
from Eq. �19�, we average over all cross sections of an equal
�infinitely� small width �� from �=0 to �=�0. We obtain

p̄��
kin =

1

V
�
i=1

N

mivi�vi�, �24�

and the complete result according to Eq. �2� is

p̄�� =
1

V
��

i=1

N

mivi�vi� + �
i=1

N

Fi��i� . �25�

This expression for the average pressure tensor over the en-
tire box is the same as the virial formula in tensor form �Eq.
8�, showing consistency of our method with the hydrody-
namic definition of the average pressure tensor over the en-
tire box. The derivation also indicates that, in the presence of
many-body interactions between the particles, the virial for-
mula in tensor form Eq. �25� is equal to averages over cross-
sectional pressures along the three Cartesian axes. This rela-
tion links the method of planes Eq. �6� or Eq. �19� �15�,
respectively, to the virial theorem. Equations �8�, or �25�,
respectively, describe the average pressure tensor with re-
spect to the walls for a rectangular box, allowing for any
interactions between the particles and inhomogeneities. Be-
sides, averaging over time is not a strict requirement and Eq.
�25� is the exact pressure tensor for homogeneous systems.
After introducing our new method in Sec. III A, we have
thus shown consistency with known results from hydrody-
namics in Secs. III B–III D.

E. Summary and perspectives

In conclusion, the micromechanical definition of the pres-
sure tensor allows the calculation of local pressure tensors in
the presence of many-body interactions. The method leads to
the same results as existing approaches for the case of two-
body interactions and average pressures.

We have also shown that the virial formula can be con-
sidered as an average over 3N planes along the three Carte-

sian coordinates. Important in the practical calculation of av-
erage pressures according to the method of planes Eq. �19� or
the virial theorem Eq. �25� is to fulfill the condition �i=1

N Fi
=0. If this would not be the case, e.g., caused by approxima-
tions in the summation of Coulomb or van der Waals inter-
actions, average pressures will be associated with an error on
the order of

perr,�� = ±
1

A�
��

i=1

N

Fi�	 . �26�

IV. NUMERICAL EXAMPLE: LIQUID PROPANE
MOLECULES IN A CUBIC BOX

We consider liquid propane as a simple molecular system
to analyze the influence of three-body interactions and to
further validate our method. We employ a semiempirical
united atom model with two types of beads for the CH3 and
CH2 groups, as described in the NERD force field �23�. The
energy expression consists of a quadratic bond stretching po-
tential, a quadratic angle bending potential, and a 12-6
Lenard-Jones potential for van der Waals interactions �23�.

A. Simulation details

We constructed a cubic box of 4
4
4 nm3 size,
bounded by repulsive wall atoms on a square grid with a side
length of 200 pm �Fig. 5�. The wall atoms resemble carbon
atoms with their effective nonbonded equilibrium distance
�400 pm�. Given the Lenard-Jones potential E=A /r12−B /r6

in the NERD force field, the parameters for the repulsive
wall atoms were set to A=1 000 000 kcal A12/mol and B
=0.01 kcal A6/mol.

The box contains 382 propane molecules, which leads to a
liquid bulk density of 
520 kg/m3 �see density profile fur-
ther below� in agreement with the phase coexistence curve at

FIG. 5. Snapshot of 382 propane molecules �black� inside a
4
4
4 nm3 cubic box bounded by wall atoms �gray�.
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298 K �23�. The system was subjected to NVT dynamics,
with a time step of 1 fs, the Verlet integrator, velocity scaling
for temperature control, and a 1.0 nm atom-based cutoff for
summation of van der Waals interactions. After initial equili-
bration of 400 ps, snapshots were recorded at intervals of
1 ps for analysis during a total trajectory of 400 ps, using the
Discover program from Accelrys, Inc. �24�.

B. Relative strength of local forces by type of interaction

Since two-body forces and three-body forces on each
atom are the basis to calculate local pressures, we examine
their relative significance first. Contributions of different in-
teractions to the net force on each atom are displayed in Fig.
6. The graph takes into account all hydrocarbon atoms in all
snapshots, i.e., 
450 000 entries. It can be seen that all con-
tributions from bond stretching, angle bending, and van der
Waals interactions are important, although different strengths
and distributions are found. Bond stretching is the strongest
contribution to atom-based forces with an average of 682 pN
per atom and a broad range of forces ranging from 0 pN to
more than 1000 pN. This is consistent with the harmonic
oscillator approximation �F=−kr�r�t�−r0�� for a continuous
range of bond elongations. Similarly, angle bending is the
second strongest contribution with an average of 378 pN per
atom and a continuous range of forces between 0 pN to more

than 600 pN. van der Waals interactions account for the
smallest contribution with an average of 208 pN and exhibit
a narrower range of forces between 20 pN and 300 pN �Fig.
6�. The bell-shaped distribution may be explained with the
presence of a flexible “solvation” shell of neighbor mol-
ecules in the liquid state, which prevents atom-based forces
close to zero through �dispersive� interactions and prevents
excessive intermolecular forces through avoidance of close
contacts �25�. The average strength of atom-based van der
Waals forces is determined through the density of the system,
e.g., an increase in density and scalar pressure would in-
crease the average van der Waals force and vice versa. Figure
6 also shows the total force on each atom, which is the vector
sum over the contributions from bond stretching �two-body�,
angle bending �three-body� and van der Waals forces �two-
body�. The total force ranges mainly between 200 pN and
1500 pN with an average of 851 pN. This value is close to
the expectation value from a “random walk” of the three
constituting force vectors �809 pN�, which indicates inde-
pendence from each other.

C. Local and average pressures

To demonstrate the calculation of local pressures and con-
sistency of averages with the method of planes and the virial
theorem, we partition the cross-sectional area into 25 arrays,

FIG. 7. Partition of the cross-sectional area of the box into
arrays.

FIG. 8. Pressure profile of the pzz component along the z axis for
the arrays in Fig. 7 including kinetic, two-body, and three-body
contributions. For reference, the density profile for the entire cross
section is also shown.

FIG. 6. Contributions to the net atomic forces and their relative
significance.
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as illustrated in Fig. 7. For symmetry reasons, there are only
six physically distinguishable arrays.

1. Local pressures

The pressure profiles along the Cartesian axis perpendicu-
lar to each array are shown in Fig. 8. As a result of the cubic
symmetry of the box, profiles along any of the three Carte-
sian axes are equal. We chose the z axis and the pressure
profiles for pzz�z� indicate three groups with similar pressure,
array 1, arrays 2 and 3, arrays 4, 5, and 6. The increase of
local pressures in this order is due to decreasing amount of
“free” space between the repulsive wall and the molecules.
In the center of the box, i.e., in the arrays 4, 5, 6 near z
=2 nm, the bulk pressure is highest �Fig. 8�. Near the walls,
i.e., at z coordinates between 0 to 1 nm and between
3 to 4 nm, pressure fluctuations due to layering are observed
�see the density profile in Fig. 8 for comparison�. Local
ranges and averages along the z coordinate of the contribu-
tions to the pressure in array 6 are summarized in Table I. At
a local scale, all contributions from two-body and three-body
interactions are important. At an average �global� scale, van
der Waals interactions �two-body� clearly dominate. This is

related to the nature of these interactions to attract or repel
molecules relative to each other and relative to the system
boundary, thus determining the average pressure. Bonded in-
teractions, in contrast, are internal for each molecule, con-
tribute significantly to the local pressure, but cancel each
other out as an average over a large area or a large volume.
As expected for an equilibrium system, no shear pressure is
found on average.

2. Average cross-sectional pressures

We compare now the cross-sectional average of the local
pressures in the 25 arrays to the method of planes. The av-
erage cross-sectional pressure is calculated by averaging
over the 25 arrays and the method of planes result is inde-
pendently calculated from the net atomic forces on all atoms
according to Eq. �7� �15�. The fixed wall atoms are included
in both calculations because they interact with the system
and are needed to fulfill the condition �i=1

N Fi=0. We obtain
numerically identical results for cross-sectional pressures for
every plane along the z coordinate using both approaches. A
graphical representation would therefore be little instructive
�equal to a weighted average of the graphs in Fig. 8� so that
we show an excerpt of the numerical results in Table II,
grouped into kinetic �Kin.�, two-body �I2�, and three-body
�I3� contributions.

3. Average pressure over the entire box

We compare now the average pressure over the entire box
calculated from local pressures to the result according to the
virial formula. Local pressures of the 25 arrays were aver-
aged to yield average cross-sectional pressures, which are
now further averaged along the z coordinate in small steps
�Sec. III D�, resulting in the average pressure over the entire
volume of the box. The choice of sufficiently small steps
along the z coordinate is important so that planes are inserted
between all particles in the averaging process �here �z
	0.5 pm�. The result according to the virial theorem is in-
dependently calculated according to Eq. �25�, including the
fixed wall atoms. The results are shown in Table III and
indicate numerical identity between the two approaches. Be-

TABLE I. Range of local pressures in array 6 along the z axis
and average over the entire z axis �MPa�.

Range of local pressure

Average along the z axisLowest Highest

pxz Kinetic −25 +25 0

Two-body −90 +90 0

Three-body −55 +55 0

pyz Kinetic −25 +25 0

Two-body −90 +90 0

Three-body −55 +55 0

pzz Kinetic +5 +85 43

Two-body +200 +500 345

Three-body −55 +55 0

TABLE II. Average cross-sectional pressures �MPa� for selected planes along the z axis �nm�, calculated from local pressures �Av� and
using the method of planes �MOP�.

z �nm�

pxz pyz pzz

Kin. I2 I3 Kin. I2 I3 Kin. I2 I3

0.500 Av −1.216 +16.43 −10.68 +0.640 +1.992 −0.172 +42.63 +171.60 −3.421

MOP −1.216 +16.43 −10.68 +0.640 +1.992 −0.172 +42.63 +171.60 −3.421

0.800 Av −0.681 +1.832 −2.993 +0.472 −1.767 +4.228 +34.41 +222.25 −0.721

MOP −0.681 +1.832 −2.993 +0.472 −1.767 +4.228 +34.41 +222.25 −0.721

1.300 Av −0.230 −4.150 −1.528 −0.553 −10.80 −0.651 +36.68 +225.38 +0.441

MOP −0.230 −4.150 −1.528 −0.553 −10.80 −0.651 +36.68 +225.38 +0.441

2.000 Av +0.311 −2.626 −0.641 +1.139 +2.930 +4.855 +31.63 +230.33 +4.055

MOP +0.311 −2.626 −0.641 +1.139 +2.930 +4.855 +31.63 +230.33 +4.055
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sides, the net atomic forces Fi can be decomposed in kinetic
contributions �Kin.�, internal contributions from bond
stretching �I2B�, van der Waals interactions �I2V�, angle
bending �I3�, and the total �TOT�. This allows to analyze the
average pressure over the entire box �as well as local pres-
sures� with respect to all contributions �Table III�. Overall,
we have shown that our method to calculate local pressures
also yields average pressures consistent with the method of
planes and with the virial theorem.

V. CONCLUSIONS

We consider an equilibrium system of N particles with no
resulting forces on and no velocity of its center of mass.
Based on the mechanical definition of the pressure as a force
across a unit area �Eq. �1��, we suggest a method to calculate
local pressure tensors in the presence of many-body interac-
tions �Eq. �15��. The pressure tensor contains a kinetic con-
tribution and a contribution from dissected n-body interac-
tions. If an n-body interaction extends across the infinite
plane related to a small area, dissection is probed by defining
two geometric centers on both sides of the small area, effec-
tively reducing the many-body interaction to a two-body in-
teraction. For dissected n-body interactions, the force across
the area is calculated using the point forces on each of the n
atoms caused by the n-body potential En. Consistency of the
proposed method with the methods of Irving and Kirkwood,
the method of planes, and the virial theorem has been shown.
Besides, our approach allows to derive the method of planes
and the virial theorem �an average over 3N planes� in a few
simple steps.

As a numerical example, we analyzed the distribution of
n-body forces for liquid propane in a cubic box. We found
that both two-body forces and three-body forces are impor-
tant on a local scale while only two-body forces, particularly
van der Waals forces, are important on a global �average�
scale. Local pressure components have been calculated and
indicate structural differences such as layering effects near
the wall. The calculation of cross-sectional and volume-
averaged pressures according to our method demonstrated
quantitative agreement with existing approaches �method of
planes, virial theorem�. Local and average pressure tensors
were analyzed with respect to contributions from momentum
�kinetic�, bond stretching, van der Waals interactions, and
angle bending.

The possibility to calculate local pressure tensors in the
presence of many-body interactions is helpful in simulations
of chemically detailed systems with complex covalent bond-
ing frameworks. Similar to the Irving-Kirkwood method, our
method may also be applied under periodic boundary condi-
tions �images need to be considered equivalent to original
particles�.
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